Panasonic ideas for life

FEATURES

1. High frequency characteristics with low capacitance between output terminals
Low output capacitance: typ. 4.8 pF Isolation loss: 40 dB or more (at 1 MHz) (AQV225)
2. High speed switching

Turn on time: typ. 0.1 ms
Turn off time: typ. 0.03 ms
3. Low-level off state leakage current of typ. 0.03 nA
4. Controls low-level analog signals PhotoMOS features extremely low closed-circuit offset voltages to enable control of small analog signals without distortion.

PhotoMOS ${ }^{\circ}$

RF 1 Form A (AQV22O)

TYPICAL APPLICATIONS

1. Measuring instruments

Scanner, IC checker, Board tester, etc.
2. Audio visual equipment

CD, VCR
3. Security equipment

RoHS compliant

TYPES

	Output rating*		Package	Part No.				Packing quantity	
	Load voltage	Load current		Through holeterminal \quad Surface-mount terminal					
				Tube packing style		Tape and re	packing style	Tube	Tape and reel
						Picked from the 1/2/3-pin side	Picked from the 4/5/6-pin side		
AC/DC dual use	40 V	80 mA	DIP6-pin	AQV221	AQV221A	AQV221AX	AQV221AZ	1 tube contains: 50 pcs.	1,000
	80 V	50 mA		AQV225	AQV225A	AQV225AX	AQV225AZ	1 batch contains: 500 pcs.	1,000

*Indicate the peak AC and DC values.
Note: The surface mount terminal shape indicator "A" and the packing style indicator " X " or " Z " are not marked on the device.

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item		Symbol	Type of connection	AQV221(A)	AQV225(A)	Remarks
Input	LED forward current	IF		50 mA		
	LED reverse voltage	$V_{\text {R }}$		5 V		
	Peak forward current	Ifp		1 A		$f=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$
	Power dissipation	Pin		75 mW		
Output	Load voltage (peak AC)	VL		40 V	80 V	
	Continuous load current	IL	A	0.08 A	0.05 A	A connection: Peak AC, DC B, C connection: DC
			B	0.09 A	0.06 A	
			C	0.12 A	0.075 A	
	Peak load current	1 Ipak		0.18 A	0.15 A	A connection: 100 ms (1 shot), $V_{L}=D C$
	Power dissipation	Pout		230 mW		
Total power dissipation		PT				
1/O isolation voltage		$V_{\text {iso }}$		1,500 V AC		
Temperature limits	Operating	Topr		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$		Non-condensing at low temperatures
	Storage	$\mathrm{T}_{\text {stg }}$		$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$		

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	Type of connection	AQV221(A)	AQV225(A)	Remarks
Input	LED operate current	Typical	Ifon	-	0.9 mA		$\mathrm{l}=\mathrm{Max}$.
		Maximum			3 mA		
	LED turn off current	Minimum	IFoff	-	0.4 mA		$\mathrm{l}=$ Max.
		Typical					
	LED dropout voltage	Typical	V_{F}	-	$1.25 \mathrm{~V}\left(1.14 \mathrm{~V}\right.$ at $\left.\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\right)$		$\mathrm{IF}_{\mathrm{F}}=50 \mathrm{~mA}$
		Maximum			1.5 V		
Output	On resistance	Typical	Ron	A	22Ω	36Ω	$\begin{aligned} & \mathrm{lF}=5 \mathrm{~mA} \\ & \mathrm{~L}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			35Ω	50Ω	
		Typical	Ron	B	13Ω	21Ω	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			18Ω	25Ω	
		Typical	Ron	C	6.5Ω	10.5Ω	$\begin{aligned} & \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \\ & \text { Within } 1 \text { s on time } \end{aligned}$
		Maximum			9Ω	12.5Ω	
	Output capacitance	Typical	Cout	-	5.6 pF	4.8 pF	$\begin{aligned} & \mathrm{IF}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHZ} \end{aligned}$
		Maximum			8 pF		
	Off state leakage current	Typical	ILeak	-	0.03 nA		$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{Max} . \end{aligned}$
		Maximum					
Transfer characteristics	Turn on time*	Typical	Ton	-	0.1 ms		$\begin{aligned} & I_{F}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=\mathrm{Max} . \end{aligned}$
		Maximum					
	Turn off time*	Typical	Toff	-	0.03 ms		$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{~L}=\mathrm{Max} . \end{aligned}$
		Maximum					
	I/O capacitance	Typical	Ciso	-	0.8 pF		$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \end{aligned}$
		Maximum			1.5 pF		
	Initial I/O isolation resistance	Minimum	Riso	-	1,000 M Ω		500 V DC

*Turn on/Turn off time

RECOMMENDED OPERATING CONDITIONS

Please obey the following conditions to ensure proper device operation and resetting.

Item	Symbol	Recommended value	Unit
Input LED current	I_{F}	5	mA

\square For Dimensions.

■ For Schematic and Wiring Diagrams.
\square For Cautions for Use.

- These products are not designed for automotive use.

If you are considering to use these products for automotive applications, please contact your local Panasonic Corporation technical representative.
For more information.

REFERENCE DATA

1. Load current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
Type of connection: A

2. Turn off time vs. ambient temperature characteristics
Sample: AQV221, AQV225; LED current: 5 mA;
Load voltage: Max. (DC)
Continuous load current: Max. (DC)

3. LED dropout voltage vs. ambient temperature characteristics
Sample: AQV221, AQV225;
LED current: 5 to 50 mA

4. On resistance vs. ambient temperature characteristics
Measured portion: between terminals 4 and 6; LED current: 5 mA ; Load voltage: Max. (DC); Continuous load current: Max. (DC)

5. LED operate current vs. ambient temperature characteristics
Sample: AQV221, AQV225
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

6. Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 4 and 6; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

7. Turn on time vs. ambient temperature characteristics
Sample: AQV221, AQV225; LED current: 5 mA; Load voltage: Max. (DC);
Continuous load current: Max. (DC)

8. LED turn off current vs. ambient temperature characteristics
Sample: AQV221, AQV225;
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

9. Off state leakage current vs. load voltage characteristics
Measured portion: between terminals 4 and 6; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10. Turn on time vs. LED forward current characteristics
Sample: AQV221, AQV225;
Measured portion: between terminals 4 and 6;
Load voltage: Max. (DC);
Continuous load current: Max. (DC);
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11. Isolation vs. frequency characteristics (50Ω impedance)
Measured portion: between terminals 4 and 6;
Frequency: 1 MHz ;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12. Turn off time vs. LED forward curren characteristics
Sample: AQV221, AQV225;
Measured portion: between terminals 4 and 6;
Load voltage: Max. (DC);
Continuous load current: Max. (DC);
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

13. Output capacitance vs. applied voltage characteristics
Measured portion: between terminals 4 and 6;
Frequency: 1 MHz ;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

14. Insertion loss vs. frequency characteristics (50Ω impedance)
Measured portion: between terminals 4 and 6;
Frequency: 1 MHz ;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

